BUILDING AND LEVERAGING A
CROSS PLATFORMVEX/
ANIMATION DEVELOPMENT
ENVIRONMEN T

by Colin Doncaster (colin@peregrinelabs.com)

O Forum

mailto:colin.doncaster@gmail.com
mailto:colin.doncaster@gmail.com

INTRODUCTION AND BRIEF
OVERVIEW OF THE TALK

* making life easy via a simple concept
- controlled environments

* cross platform build management

Ed Forum &%
peregrine*

WHAT DOES CROSS PLATFORM M
THE CONTEXT OF THIS TALK?

MGER L G 4 D
» Multiple OS platforms (Linux, Windows, OSX)

» Multiple Third Party applications (Maya, Houdini, Nuke &
myriad of renderers)

» Cross platform Shaders and Shader DSO's (Arnold c++,
Eliclerman DS0O's etc.)

e Rlattorm APls (Boost, Qt, etc).

YOUR ENVIRONMENT

» where you work (home, office, on set, traveling)

* what you're working on (Windows, Linux, Mac)
» the current state (variables, installation locations, versions)
* production requirements

FORESHADOWING (IE. PROBLEMS WITH
UNCONTROLLED ENVIRONMENTS)

* versions of applications
* production vs. testing betas
» staging new builds
* R&D

* dependencies

» deployment

* per show, sequence and shot dependencies (and how to
stage control over these)

HOW CAN THIS BE MANAGED?

(ONE PERSONS OPINION)

» always start fresh

» use the shelll (or at least wrap 1t up nicely)

* break down each chunk of information into manageable pieces

* pick your weapon (python)

- make It a requirement to work this way

BUILD THE FOUNDATION

(REQUIRED CHEESY SLIDE)

a common means of resolving non cross platform
requirements

defining each applications environment needs (packages)

resolving dependencies

easy to execute

NON CROSS PLATFORM
CONSIDERATIONS

ke decisions on how to represent non-cross platform
uirements

* base directories
* users
» system libraries, shared libraries etc.

* build a myStudioCrossPlatform.py library which resolves
directory locations and wraps up global environment variables
that lets you do:

myPath = myStudioCrossPlatform.getPluginsDirectory()

8
Ed Forum &
peregrine*

* 2 package contains a description of environment needs
» platforms supported (Windows, OSX and Linux)
* the version this represents
» environment variables (path to binaries, libraries, etc.)

» dependencies and their specific environment needs
(unigue to this package)

Ed Forum &S

RESOLVE DEPENDENCIES

» each package should list dependencies and/or define how to
behave In another package has been requested

* dependencies can also include other environment variables
W cdllieciories etc.)

* both dependencies and environment variables should be

“resolved’ and unrolled for a clean environment

Ed Forum

EXAMPLE PACKAGE

{
‘tool': 'nuke',
'version': '6.3',
'platforms': ['windows', 'linux', 'darwin'],
'requires': [],
‘environment’:
{
'NUKE_MAJOR_VERSION': '6.3',
'NUKE_MINOR_VERSION': '8',
'NUKE_BASE': '${PG_SW_BASE}/thefoundry/${NUKE_VERSION}',
'NUKE': {'darwin': '${NUKE_BASE}/${NUKE_VERSION}.app/Contents/Mac0S"',

"linux': "${NUKE_BASE}',

'windows': 'C:/Program Files/Nuke${NUKE_MAJOR_VERSION}v${NUKE_MINOR_VERSION}',},
'NUKE_VERSION': 'Nuke${NUKE_MAJOR_VERSION}v${NUKE_MINOR_VERSION}',
'NUKEX_VERSION': 'NukeX${NUKE_MAJOR_VERSION}v${NUKE_MINOR_VERSION}',
'PATH': {'darwin': '${NUKE_BASE}/${NUKE_VERSION}.app/:${NUKE_BASE}/${NUKEX_VERSION}.app/',

"Linux': '${NUKE}',

'windows': '${NUKE}'},

}
'optional': { 'dev':
{
'NUKE_PATH': '${DEV_BUILDS}',
H
| B

Ed Forum &
peregrine*

EXECUTION

[insert inappropriate image here |

* user requests the versions of software they need

* list of dependencies are bullt and packages sourced

» the environment and dependencies are resolved

» a flattened (unrolled) environment Is stored

» this Is used to “set’” the current working environment

* success!

td Forum &

A TOOL BY MANY NAMES

* need (Weta, originated at POP)

* use (lippett and others)

> s [lFuEl UsE

* rez (Dr. D, open sourced and very verbose)

» ecosystem (Peregrine)

ECOSYSTEM= AN EXAMPLE -

1O THE SHELL

WARNING

DRINKING

ALCOHOLIC BEVERAGES
BEFORE PREGNANCY
CAN CAUSE
PREGNANCY

CAVEAIS

* python doesn't let you set the current environment

* on unix platforms the environment can be stored to a
temporary file and sourced

* on windows the environment can be launched/set for
each invocation of applications wrapped in a .cmd file

inorcic]
Ed Forum &
peregrine*

SOME BENEFITS

(IF NOT OBVIOUS)

* It's easy to push out new package descriptions to support
newly Installed software

* no environment clashes, especially on Windows (Maya 2012
and 2013 plugins fighting for resolution etc.)

* easy to separate development and release version where
staging and testing Is extremely easy

» control over sequence and shots dependencies, may be
controlled by artists or supervisors

8
Ed Forum &
peregrine*

NOW WE CAN THINK ABOU T
BUILD SYSTEMS

* a system to wrap up the dependencies and steps needed to
build (compile) source code to produce a tool

» senerally referred to as tool chains; compller; linker and other
build tools

 Visual Studio, XCode, makefiles, Scons and CMake

CMAKE FOR THE WIN

* cross platform
* mature and becoming more widely supported
» senerators for different toolchains

» 2 module concept, very useful for defining dependencies

«
M
.-

Ed Forum &
peregrine*

CMAKE GENERATORS

» used to bulld intermediate files for the target platform all from
a cCommon source

* Makefiles on Linux

» Makefiles/XCode Projects on O5X

* NMake files/MSVC Projects on Windows (Jom for NMake
builds)

-
Ed Forum &%
peregrine*

CMAKE MODULES

» Call FindPackage.cmake, ie. FindQ T4, Find Tiff, FindHDFS etc.

* We can derive our own, le. FindMaya, FindNuke, FindPRMan,
FindHoudini, FindArnold

* having a common environment makes this much easier to
resolve/implement the desired version and dependencies

* let’s look at onel

8
Ed Forum &
peregrine*

CMAKE TARGETS &
CONFIGURATIONS

» each cmake project can contain multiple targets

* each target inherits a global environment with the option of
specifying/overriding target specific options

» a configuration can be one of Debug, RelWithDeblnfo and
Release

* each configuration controls global build options to provide a
specific style of binary output

8
Ed Forum &
peregrine*

CMAKE EXAMPLE -

BACK TO THE SHELL!

| DON'T WANT TO BUILD
C++, SHOULD | STILL CARE!

* No one said you have to do any of this, but it's hard not to argue
the merit In having a controlled environment across multiple
platforms

* managing software dependencies and show/seg/shot

requirements it's probably worth leveraging beyond any sort of
development

» python, perl, tcl, your language of choice, still requires modules to
be Installed - virtual env and other tools can be used but It still
good to have a studio wide means of managing these

-
Ed Forum &%
peregrine*

TAKING [T A STEP FURTHER

» easy to set an environment on the render farm (keys become
need dependencies to be sourced)

 store environment ‘‘needs’”’ iIn EXR meta data for historical
DUrPOSES

* easy to expand to external locations (on set equipment and
outsource)

* Integrate license and resource management (choose to
access different pools of a render farm based on
dependencies)

-
td Forum &

THE CLOUD

("ON A BEACH IN COSTA RICA™)

* leverage version control for global access to the toolset
(GrtHub)

« S3 for distribution

* a new tag in a package, bundle://

» bundle encapsulates the cross platform installation for the
backage based on hdf5 and fuse file system (like a dmg or
custom Image)

* a nice side effect Is easy disaster recovery

Ed Forum &
peregrine*

RE-ITERATING GOAL

* simple control
» clear understanding of context

» flexibility of tools

* 3 COMMOon environment

QUESTIONS/DISCUSSION ¢

’%
Ed Forum
peregrine*

