
BUILDING AND LEVERAGING A
CROSS PLATFORM VFX/

ANIMATION DEVELOPMENT
ENVIRONMENT

by Colin Doncaster (colin@peregrinelabs.com)

mailto:colin.doncaster@gmail.com
mailto:colin.doncaster@gmail.com

INTRODUCTION AND BRIEF
OVERVIEW OF THE TALK

•making life easy via a simple concept

• controlled environments

• cross platform build management

WHAT DOES CROSS PLATFORM MEAN IN
THE CONTEXT OF THIS TALK?

•Multiple OS platforms (Linux, Windows, OSX)
•Multiple Third Party applications (Maya, Houdini, Nuke &

myriad of renderers)
• Cross platform Shaders and Shader DSO’s (Arnold c++,

Renderman DSO’s etc.)
• Cross Platform APIs (Boost, Qt, etc).

YOUR ENVIRONMENT
• where you work (home, office, on set, traveling)
• what you’re working on (Windows, Linux, Mac)
• the current state (variables, installation locations, versions)
• production requirements

FORESHADOWING (IE. PROBLEMS WITH
UNCONTROLLED ENVIRONMENTS)

• versions of applications
• production vs. testing betas
• staging new builds
• R&D

• dependencies
• deployment
• per show, sequence and shot dependencies (and how to

stage control over these)

HOW CAN THIS BE MANAGED?
(ONE PERSONS OPINION)

• always start fresh

• use the shell! (or at least wrap it up nicely)

• break down each chunk of information into manageable pieces

• pick your weapon (python)

•make it a requirement to work this way

BUILD THE FOUNDATION
(REQUIRED CHEESY SLIDE)

• a common means of resolving non cross platform
requirements

• defining each applications environment needs (packages)

• resolving dependencies

• easy to execute

NON CROSS PLATFORM
CONSIDERATIONS

•make decisions on how to represent non-cross platform
requirements

• base directories
• users
• system libraries, shared libraries etc.

• build a myStudioCrossPlatform.py library which resolves
directory locations and wraps up global environment variables
that lets you do:

myPath = myStudioCrossPlatform.getPluginsDirectory()

PACKAGES

• a package contains a description of environment needs
• platforms supported (Windows, OSX and Linux)
• the version this represents
• environment variables (path to binaries, libraries, etc.)
• dependencies and their specific environment needs

(unique to this package)

RESOLVE DEPENDENCIES
• each package should list dependencies and/or define how to

behave in another package has been requested
• dependencies can also include other environment variables

(base directories etc.)
• both dependencies and environment variables should be

“resolved” and unrolled for a clean environment

EXAMPLE PACKAGE

EXECUTION

• user requests the versions of software they need

• list of dependencies are built and packages sourced

• the environment and dependencies are resolved

• a flattened (unrolled) environment is stored

• this is used to “set” the current working environment

• success!

[insert inappropriate image here]

A TOOL BY MANY NAMES
• need (Weta, originated at POP)

• use (Tippett and others)

• fuse (Fuel “use”)

• rez (Dr. D, open sourced and very verbose)

• ecosystem (Peregrine)

ECOSYSTEM= AN EXAMPLE -
TO THE SHELL!

CAVEATS
• python doesn’t let you set the current environment

• on unix platforms the environment can be stored to a
temporary file and sourced

• on windows the environment can be launched/set for
each invocation of applications wrapped in a .cmd file

SOME BENEFITS
(IF NOT OBVIOUS)

• it’s easy to push out new package descriptions to support
newly installed software

• no environment clashes, especially on Windows (Maya 2012
and 2013 plugins fighting for resolution etc.)

• easy to separate development and release version where
staging and testing is extremely easy

• control over sequence and shots dependencies, may be
controlled by artists or supervisors

NOW WE CAN THINK ABOUT
BUILD SYSTEMS

• a system to wrap up the dependencies and steps needed to
build (compile) source code to produce a tool

• generally referred to as tool chains; compiler, linker and other
build tools

• Visual Studio, XCode, makefiles, Scons and CMake

CMAKE FOR THE WIN

• cross platform

•mature and becoming more widely supported

• generators for different toolchains

• a module concept, very useful for defining dependencies

CMAKE GENERATORS

• used to build intermediate files for the target platform all from
a common source

•Makefiles on Linux

•Makefiles/XCode Projects on OSX

•NMake files/MSVC Projects on Windows (Jom for NMake
builds)

CMAKE MODULES

• Call FindPackage.cmake, ie. FindQT4, FindTiff, FindHDF5 etc.

•We can derive our own, ie. FindMaya, FindNuke, FindPRMan,
FindHoudini, FindArnold

• having a common environment makes this much easier to
resolve/implement the desired version and dependencies

• let’s look at one!

CMAKE TARGETS &
CONFIGURATIONS

• each cmake project can contain multiple targets

• each target inherits a global environment with the option of
specifying/overriding target specific options

• a configuration can be one of Debug, RelWithDebInfo and
Release

• each configuration controls global build options to provide a
specific style of binary output

CMAKE EXAMPLE -
BACK TO THE SHELL!

I DON’T WANT TO BUILD
C++, SHOULD I STILL CARE?

• no one said you have to do any of this, but it’s hard not to argue
the merit in having a controlled environment across multiple
platforms

• managing software dependencies and show/seq/shot
requirements it’s probably worth leveraging beyond any sort of
development

• python, perl, tcl, your language of choice, still requires modules to
be installed - virtual env and other tools can be used but it still
good to have a studio wide means of managing these

TAKING IT A STEP FURTHER
• easy to set an environment on the render farm (keys become

need dependencies to be sourced)

• store environment “needs” in EXR meta data for historical
purposes

• easy to expand to external locations (on set equipment and
outsource)

• integrate license and resource management (choose to
access different pools of a render farm based on
dependencies)

THE CLOUD
(“ON A BEACH IN COSTA RICA”)

• leverage version control for global access to the toolset
(GitHub)

• S3 for distribution

• a new tag in a package, bundle://

• bundle encapsulates the cross platform installation for the
package based on hdf5 and fuse file system (like a dmg or
custom image)

• a nice side effect is easy disaster recovery

RE-ITERATING GOAL
• simple control
• clear understanding of context
• flexibility of tools
• a common environment

QUESTIONS/DISCUSSION ?

