# Deep Image Compositing @ Nordic TDForum 2011

Presented by: Colin Doncaster



#### Introduction

- this course is meant to introduce the concepts of deep image compositing
- provide some background that will help when you start to use deep images in production
- and share some insights into how it evolved and was adopted with-in a few large scale productions

# The Catalyst

- dealing with depth passes in "post" was always hit and miss
- any sort of convolution that relied on this Z information failed more often than not due to incorrect Z values or discontinuous results
- integrating multiple passes via depth compositing was less than desirable
- this was becoming a bigger issue as there were more and more fully CG shots with data generated from multiple sources

### Evolution

- there was already a multi-pass re-rendering engine but that added more complexity than desired so we started to see what else we could utilize
- deep shadows seemed ideal although they solved slightly different problems in "light space" they provided us with the information we wanted
- it was straight forward to quickly test our hunch, it was a matter of adding a new display line to the rib file to generate a deep shadow from the camera
- we didn't have to invent a new format (yet) to make use of them as Pixar provided the dtex libraries with all of their distributions

# A Guinea Pig

- first tests were visualizing deep images in Shake which quickly led to extremely nice hold out mattes
- this was a single reader node and a hold out node
- DESS (2008) was in production and had a massive volume cloud with elements that needed to be integrated, iterations were slow due to volume rendering (and re-rendering) requirements
- Arieto gets wind of the deep image testing and volunteers to be a guinea pig

#### DESS Truck Swarm

### The Fallout

- files were HUGE, although it was a lesser of two evils it wasn't ideal - this led to slow renders in the comp, way to much network traffic and at that time the deep image library wasn't thread safe
- PRMan undocumented z threshold RiOption to the rescue, this compressed the deep images by throwing away samples but this was a lossy process which meant a lot of experimenting and at times it introduced more artifacts (noise!)
- the files were still HUGE

### The Success

- although there were issues we felt we were on to something which led to an effort to properly integrate deep images into Shake
- Peter Hillman @ Weta became the R&D lead and integrated deep compositing into the core of Shake
- easy to implement on a larger scale ( ie. one line added into the RIB )
- at that stage deep shadows were "promoted" to deep images

# A Much Larger Guinea Pig

- Avatar was in production and the director wanted an atmospheric, "under water feeling" for Pandora's jungle
- initial tests of depth fog with deep images proved positive, traditional issues of motion blur causing artifacts weren't visible and iterations could happen at the compositing stage fairly interactively

### Improving the Workflow

- re-rendering issues with characters and jungle, Weta likes to get everything right in lighting and render as few passes as possible.
- Characters animation and look were changing at a different pace than environment
- the solution was to break out characters and jungle and re-assemble in comp via deep image holdout

#### A nice variation on mattes...

- how is this different from matte objects? Matte objects still require all of the elements, ie. you'd still have to render a matte jungle with characters and vice versa.
- this led to a nice side effect, memory consumption was a lot less as large elements could be rendered separately (although storing the deep samples meant more space needed for the frame buffer )

# Deep compositing rolled out...

- the depth fog and holdouts became the main use for deep images
- it was adopted for many Avatar shots with deep images being "switched on" more often than not ( due to an approved look )
- at this stage we were still only storing deep images with an alpha

### What else was possible?

- due to having projection matrices we started to experiment by extending the volume integrator to take non camera based deep images for light integration.
- we were also able to inverse project the samples to create point clouds for visualization purposes, surface derivation and more...
- another nice side effect was very interesting "making of" elements

### What is a deep image?

# **Pre-History**

- a frame buffer is a flat data structure that stores any number of values at pixel locations, this can be an image, open gl texture or screen
- when a renderer rasterizes geometry it internally stores a lot more information than just the final RGBA values
- the idea of making this data available post-render isn't new - IPR rendering, RLA, Lpics and even AOVs for relighting in a compositing application are all examples of this...

# Pre-History Cont...

- depth information is extremely important when rasterizing
- at some point a smart person decided to store the this depth information
- followed by another smart person storing the projection matrices to access the data for shadowing purposes
- although each pixel contained a depth value there are many occasions when this isn't enough and these traditional depth passes were ( and still are ) laden with issues

# Problems with traditional Z

- there are many ways of generating a Z pass
- z, I/z, P
- unfiltered or filtered ( !? )
- no transparency
- what depth to use? min, max or average?
- biasing
- all of this generally lead to a lot of artifacts and a lot of value tweaking to get it right

### A Solution!

- Deep shadow maps were introduced via Tom Lokovic and Eric Veach @ Pixar circa. 2000
- these were a major breakthrough in lighting at the time
- multiple depth samples are stored via an opacity extinction function ( how much light was penetrating to that sample ) and provided a means of storing partial pixel coverage into the image
- this improved hair self shadowing, introduced motion blurred shadow maps and increased shadow quality at much lower resolutions
  Figure 1: Hair rendered with and without self-shadowing.

disclaimer: I'm simplifying a lot of this, of course

# Deep Images

- Just an evolution of deep shadows
- Deep shadows were created to solve issues inherit with traditional Z depth images and shadow casting, deep images extend that to the camera view
- Each pixel is a list of samples with depth information vs. a single depth entry
- each depth sample can store Alpha, RGBA or other arbitrary values (PRMan 16 and OpenEXR 2.0)
- the elegance comes from how these deep images are interpreted

#### Traditional vs.







#### What do deep samples look like? (Continuous, Discrete and Z)



# What do deep samples look like?



#### Some obvious misconceptions...



#### Modifying Deep Data - Z Cropping



#### Modifying Deep Data - Z Cropping Pt 2.



### **Compositing Operations**

- merge ( append and interleave )
- holdout
- z-crop
- resample
- convolutions & generators (noise, defocus, etc.)

### Be aware of the data...

- the data is even more important than before, get in the habit of inspecting what the renderer has generated ( and make sure you have tools that makes this easy )
- building tools to visualize the data is going to be just as important as what you do with it
- as always meta data stored in the header can be very useful!

#### How to get started? Generating...

- you need a renderer that offers a means of generating deep image data (PRMan, 3Delight, Mantra...)
- Mantra generates deep camera files, PRMan and 3delight generate the deep image files which will be secondary secondary displays of the main camera
- RMS supports this for PRMan, 3delight for Maya will support it but you need to make sure you turn mip mapping off ( so you can generate the non power of two images )
- be aware that these are all DIFFERENT formats

#### Using...

- you need a compositing tool that reads them, right now this means The Foundry's Nuke or a proprietary system if available
- You'll need to have a reader for the deep image format of choice, Nuke ships with PRMan dtex support ( source code supplied for this as a reference )
- until OpenEXR 2.0 you need to keep track of all the different files, compounded with Stereo
- don't using for everything, only use it when needed

#### When should it be used?

- not all the time!
- using and adopting deep image compositing and the impact it has on your pipeline/io depends on your workflow
  - get it right in lighting ( element based passes ) = good
  - multi-pass rendering and lighting in comp = bad
- integrating volume elements ( + fur, feathers )
  - with other CG passes that have deep data
  - integrating with live action plates

Notes on implementation...

- whether or not you're integrating into a third party application there's still a case for implementing your own tools
- depending on how they were generated samples may not be sorted, so be smart about when and how often you do so
- the sample list can be big, heap sorting is a good balance between speed and flexibility
- convolutions are HARD and slow, resampling is your friend

# Some things to consider...

- it's a workflow that's still in it's infancy, things will change!
- Weta's OpenDeepZ -> OpenEXR 2.0 will mean a decent standard is on its way
- hopefully this standard format will make it easier for other applications to generate and use deep data, having spoken to a few vendors most of them are waiting for OpenEXR 2.0
- it's pretty obvious when you think about it!

### Future considerations...

- Is this the silver bullet? I don't think so, this is an evolution to a more flexible way of compositing. It solves some problems but not very elegant
- It breaks a lot of research, GPU acceleration generally is thrown out the door. With that said, there have been some deep buffer experiments on the GPU
- it will be important to leverage standards in the future and work with hardware vendors to provide deep frame buffers
- why stop here? why not just use brick maps or point clouds?

# Any questions?

Colin Doncaster - colin@peregrinelabs.com