
Deep Image Compositing @
Nordic TDForum 2011

Presented by: Colin Doncaster

Introduction

• this course is meant to introduce the concepts of deep
image compositing

• provide some background that will help when you start
to use deep images in production

• and share some insights into how it evolved and was
adopted with-in a few large scale productions

The Catalyst
• dealing with depth passes in “post” was always hit and

miss

• any sort of convolution that relied on this Z
information failed more often than not due to incorrect
Z values or discontinuous results

• integrating multiple passes via depth compositing was
less than desirable

• this was becoming a bigger issue as there were more
and more fully CG shots with data generated from
multiple sources

Evolution
• there was already a multi-pass re-rendering engine but

that added more complexity than desired so we started
to see what else we could utilize

• deep shadows seemed ideal - although they solved
slightly different problems in “light space” they provided
us with the information we wanted

• it was straight forward to quickly test our hunch, it was
a matter of adding a new display line to the rib file to
generate a deep shadow from the camera

• we didn’t have to invent a new format (yet) to make
use of them as Pixar provided the dtex libraries with all
of their distributions

A Guinea Pig
• first tests were visualizing deep images in Shake which

quickly led to extremely nice hold out mattes

• this was a single reader node and a hold out node

• DESS (2008) was in production and had a massive
volume cloud with elements that needed to be
integrated, iterations were slow due to volume
rendering (and re-rendering) requirements

• Arieto gets wind of the deep image testing and
volunteers to be a guinea pig

DESS Truck Swarm

The Fallout
• files were HUGE, although it was a lesser of two evils it

wasn’t ideal - this led to slow renders in the comp, way
to much network traffic and at that time the deep
image library wasn’t thread safe

• PRMan undocumented z threshold RiOption to the
rescue, this compressed the deep images by throwing
away samples but this was a lossy process which meant
a lot of experimenting and at times it introduced more
artifacts (noise!)

• the files were still HUGE

The Success

• although there were issues we felt we were on to something
which led to an effort to properly integrate deep images into
Shake

• Peter Hillman @ Weta became the R&D lead and integrated
deep compositing into the core of Shake

• easy to implement on a larger scale (ie. one line added into
the RIB)

• at that stage deep shadows were “promoted” to deep images

A Much Larger Guinea Pig

• Avatar was in production and the director wanted an
atmospheric, “under water feeling” for Pandora’s jungle

• initial tests of depth fog with deep images proved
positive, traditional issues of motion blur causing
artifacts weren’t visible and iterations could happen at
the compositing stage fairly interactively

Improving the Workflow

• re-rendering issues with characters and jungle, Weta
likes to get everything right in lighting and render as few
passes as possible.

• Characters animation and look were changing at a
different pace than environment

• the solution was to break out characters and jungle and
re-assemble in comp via deep image holdout

A nice variation on mattes...

• how is this different from matte objects? Matte objects
still require all of the elements, ie. you’d still have to
render a matte jungle with characters and vice versa.

• this led to a nice side effect, memory consumption was
a lot less as large elements could be rendered
separately (although storing the deep samples meant
more space needed for the frame buffer)

Deep compositing rolled out...

• the depth fog and holdouts became the main use for
deep images

• it was adopted for many Avatar shots with deep images
being “switched on” more often than not (due to an
approved look)

• at this stage we were still only storing deep images with
an alpha

What else was possible?

• due to having projection matrices we started to
experiment by extending the volume integrator to take
non camera based deep images for light integration.

• we were also able to inverse project the samples to
create point clouds for visualization purposes, surface
derivation and more...

• another nice side effect was very interesting “making
of” elements

What is a deep image?

Pre-History

• a frame buffer is a flat data structure that stores any
number of values at pixel locations, this can be an
image, open gl texture or screen

• when a renderer rasterizes geometry it internally
stores a lot more information than just the final RGBA
values

• the idea of making this data available post-render isn’t
new - IPR rendering, RLA, Lpics and even AOVs for
relighting in a compositing application are all examples
of this...

Pre-History Cont...
• depth information is extremely important when

rasterizing

• at some point a smart person decided to store the this
depth information

• followed by another smart person storing the
projection matrices to access the data for shadowing
purposes

• although each pixel contained a depth value there are
many occasions when this isn’t enough and these
traditional depth passes were (and still are) laden with
issues

Problems with traditional Z
• there are many ways of generating a Z pass

• z, 1/z, P

• unfiltered or filtered (!?)

• no transparency

• what depth to use? min, max or average?

• biasing

• all of this generally lead to a lot of artifacts and a lot of
value tweaking to get it right

A Solution!
• Deep shadow maps were introduced via Tom Lokovic

and Eric Veach @ Pixar circa. 2000

• these were a major breakthrough in lighting at the time

• multiple depth samples are stored via an opacity
extinction function (how much light was penetrating to
that sample) and provided a means of storing partial
pixel coverage into the image

• this improved hair self shadowing, introduced motion
blurred shadow maps and increased shadow quality at
much lower resolutions

disclaimer: I’m simplifying a lot of this, of course

Deep Images
• Just an evolution of deep shadows

• Deep shadows were created to solve issues inherit with
traditional Z depth images and shadow casting, deep
images extend that to the camera view

• Each pixel is a list of samples with depth information vs.
a single depth entry

• each depth sample can store Alpha, RGBA or other
arbitrary values (PRMan 16 and OpenEXR 2.0)

• the elegance comes from how these deep images are
interpreted

Traditional vs.

Deep

What do deep samples look like?
(Continuous, Discrete and Z)

This should really be flipped...

What do deep samples look like?
(Inverse Projection)

Some obvious misconceptions...
there’s data missing!

Modifying Deep Data - Z Cropping

Modifying Deep Data - Z Cropping Pt 2.
there’s still data missing!

Compositing Operations

• merge (append and interleave)

• holdout

• z-crop

• resample

• convolutions & generators (noise, defocus, etc.)

Be aware of the data...

• the data is even more important than before, get in the
habit of inspecting what the renderer has generated
(and make sure you have tools that makes this easy)

• building tools to visualize the data is going to be just as
important as what you do with it

• as always meta data stored in the header can be very
useful!

How to get started? Generating...

• you need a renderer that offers a means of generating
deep image data (PRMan, 3Delight, Mantra...)

• Mantra generates deep camera files, PRMan and
3delight generate the deep image files which will be
secondary secondary displays of the main camera

• RMS supports this for PRMan, 3delight for Maya will
support it but you need to make sure you turn mip
mapping off (so you can generate the non power of
two images)

• be aware that these are all DIFFERENT formats

Using...

• you need a compositing tool that reads them, right now
this means The Foundry’s Nuke or a proprietary system
if available

• You’ll need to have a reader for the deep image format
of choice, Nuke ships with PRMan dtex support
(source code supplied for this as a reference)

• until OpenEXR 2.0 you need to keep track of all the
different files, compounded with Stereo

• don’t using for everything, only use it when needed

When should it be used?

• not all the time!

• using and adopting deep image compositing and the
impact it has on your pipeline/io depends on your
workflow

• get it right in lighting (element based passes) =
good

• multi-pass rendering and lighting in comp = bad

• integrating volume elements (+ fur, feathers)

• with other CG passes that have deep data

• integrating with live action plates

Notes on implementation...

• whether or not you’re integrating into a third party
application there’s still a case for implementing your
own tools

• depending on how they were generated samples may
not be sorted, so be smart about when and how often
you do so

• the sample list can be big, heap sorting is a good balance
between speed and flexibility

• convolutions are HARD and slow, resampling is your
friend

Some things to consider...
• it’s a workflow that’s still in it’s infancy, things will

change!

• Weta’s OpenDeepZ -> OpenEXR 2.0 will mean a
decent standard is on its way

• hopefully this standard format will make it easier for
other applications to generate and use deep data, having
spoken to a few vendors most of them are waiting for
OpenEXR 2.0

• it’s pretty obvious when you think about it!

Future considerations...
• Is this the silver bullet? I don’t think so, this is an

evolution to a more flexible way of compositing. It solves
some problems but not very elegant

• It breaks a lot of research, GPU acceleration generally is
thrown out the door. With that said, there have been
some deep buffer experiments on the GPU

• it will be important to leverage standards in the future
and work with hardware vendors to provide deep frame
buffers

• why stop here? why not just use brick maps or point
clouds?

Any questions?
Colin Doncaster - colin@peregrinelabs.com

